1、数乘向量是与一个实数和一个向量有关的一种向量运算,即数量与向量的乘法运算。n个相等的非零向量a相加所得的和向量,叫作正整数n与向量a的积,记为na。从这个狭义的定义中抽象出来。
2、两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。
3、两个向量垂直,有垂直定理:若设a=(x1,y1),b=(x2,y2) ,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0 。
4、共线向量定理:向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa 向量的线性运算:向量的加、减、数乘运算统称为向量的线性运算。
5、数乘向量的运算律:(1)= (结合律)(2)(+) =+(第一分配律)(3)(+)=+。(第二分配律)1平行向量基本定理 如果向量,则//的充分必要条件是,存在唯一的实数,使得=。
6、向量共线定理:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。